Bipolar thermoelectric Josephson engine | Nature Nanotechnology


  • Ashcroft, N. & Mermin, N. Strong State Physics (Holt-Saunders, 1976).


    Google Scholar
     

  • Abrikosov, A. A. Fundamentals of the Principle of Metals (Courier Dover Publications, 2017).

  • Mott, N. F. & Jones, H. The Principle of the Properties of Metals and Alloys (Dover Publications, 1958).


    Google Scholar
     

  • Mamin, H. J., Clarke, J. & Van Harlingen, D. J. Cost imbalance induced by a temperature gradient in superconducting aluminum. Phys. Rev. B 29, 3881–3890 (1984).

    CAS 
    Article 

    Google Scholar
     

  • Meissner, W. Z. Das elektrische verhalten der metalle im temperaturgebiet des flüssigen heliums. Z. Ges. Kälte Industrie 34, 197 (1927).


    Google Scholar
     

  • Ginzburg, V. On the thermoelectric phenomena in superconductors. Zh. Eksp. Teor. Fiz. 14, 134 (1944).


    Google Scholar
     

  • Shelly, C. D., Matrozova, E. A. & Petrashov, V. T. Resolving thermoelectric ‘paradox’ in superconductors. Science 2, e1501250 (2016).


    Google Scholar
     

  • Guttman, G. D., Nathanson, B., Ben-Jacob, E. & Bergman, D. J. Thermoelectric and thermophase results in Josephson junctions. Phys. Rev. B 55, 12691–12700 (1997).

    CAS 
    Article 

    Google Scholar
     

  • Giazotto, F., Heikkilä, T. T. & Bergeret, F. S. Very massive thermophase in ferromagnetic Josephson junctions. Phys. Rev. Lett. 114, 067001 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Kleeorin, Y., Meir, Y., Giazotto, F. & Dubi, Y. Giant tunable thermophase in superconductor – quantum dot – superconductor Josephson junctions. Sci. Rep. 6, 35116 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Smith, A. D., Tinkham, M. & Skocpol, W. J. New thermoelectric impact in tunnel junctions. Phys. Rev. B 22, 4346–4354 (1980).

    CAS 
    Article 

    Google Scholar
     

  • Machon, P., Eschrig, M. & Belzig, W. Nonlocal thermoelectric results and nonlocal Onsager relations in a three-terminal proximity-coupled superconductor-ferromagnet machine. Phys. Rev. Lett. 110, 047002 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Ozaeta, A., Virtanen, P., Bergeret, F. S. & Heikkilä, T. T. Predicted very massive thermoelectric impact in ferromagnet-superconductor junctions within the presence of a spin-splitting magnetic area. Phys. Rev. Lett. 112, 057001 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Kolenda, S., Wolf, M. J. & Beckmann, D. Commentary of thermoelectric currents in high-field superconductor-ferromagnet tunnel junctions. Phys. Rev. Lett. 116, 097001 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Bergeret, F. S., Silaev, M., Virtanen, P. & Heikkilä, T. T. Colloquium: nonequilibrium results in superconductors with a spin-splitting area. Rev. Mod. Phys. 90, 041001 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Linder, J. & Robinson, J. W. A. Superconducting spintronics. Nat. Phys. 11, 307–315 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Virtanen, P. & Heikkilä, T. T. Thermopower induced by a supercurrent in superconductor–normal-metal buildings. Phys. Rev. Lett. 92, 177004 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Blasi, G., Taddei, F., Arrachea, L., Carrega, M. & Braggio, A. Nonlocal thermoelectricity in a superconductor–topological-insulator–superconductor junction in touch with a normal-metal probe: proof for helical edge states. Phys. Rev. Lett. 124, 227701 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Tan, Z. B. et al. Thermoelectric present in a graphene Cooper pair splitter. Nat. Commun. 12, 138 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Eom, J., Chien, C.-J. & Chandrasekhar, V. Part dependent thermopower in Andreev interferometers. Phys. Rev. Lett. 81, 437–440 (1998).

    CAS 
    Article 

    Google Scholar
     

  • Jiang, Z. & Chandrasekhar, V. Quantitative measurements of the thermal resistance of Andreev interferometers. Phys. Rev. B 72, 020502(R) (2005).

    Article 
    CAS 

    Google Scholar
     

  • Hofstetter, L., Csonka, S., Nygård, J. & Schönenberger, C. Cooper pair splitter realized in a two-quantum-dot Y-junction. Nature 461, 960–963 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Benenti, G., Casati, G., Saito, Okay. & Whitney, R. S. Elementary features of steady-state conversion of warmth to work on the nanoscale. Phys. Rep. 694, 1–124 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Campisi, M., Pekola, J. P. & Fazio, R. Nonequilibrium fluctuations in quantum warmth engines: principle, instance, and potential strong state experiments. N. J. Phys. 17, 035012 (2015).

    Article 

    Google Scholar
     

  • Bera, M. L., Lewenstein, M. & Bera, M. N. Attaining Carnot effectivity with quantum and nanoscale warmth engines. npj Quantum Inf. 7, 31 (2021).

    Article 

    Google Scholar
     

  • Josefsson, M. et al. A quantum-dot warmth engine working near the thermodynamic effectivity limits. Nat. Nanotechnol. 13, 920–924 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Dubi, Y. & Di Ventra, M. Colloquium: warmth stream and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83, 131 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Ono, Okay., Shevchenko, S. N., Mori, T., Moriyama, S. & Nori, F. Analog of a quantum warmth engine utilizing a single-spin qubit. Phys. Rev. Lett. 125, 166802 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Marchegiani, G., Braggio, A. & Giazotto, F. Nonlinear thermoelectricity with electron-hole symmetric techniques. Phys. Rev. Lett. 124, 106801 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Roddaro, S. et al. Large thermovoltage in single InAs nanowire field-effect transistors. Nano Lett. 13, 3638–3642 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Soleimani, Z., Zoras, S., Ceranic, B., Shazad, S. & Cui, Y. A evaluation on latest developments of thermoelectric supplies for room-temperature purposes. Maintain. Power Technol. Assess. 37, 100604 (2020).


    Google Scholar
     

  • Mani, P., Nakpathomkun, N. & Linke, H. Intrinsic Seebeck coefficient of quantum dots. J. Electron. Mater. 38, 1163–1165 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Prete, D. et al. Thermoelectric conversion at 30 Okay in InAs/InP nanowire quantum dots. Nano Lett. 19, 3033–3039 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Marchegiani, G., Braggio, A. & Giazotto, F. Part-tunable thermoelectricity in a Josephson junction. Phys. Rev. Res. 2, 043091 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Marchegiani, G., Braggio, A. & Giazotto, F. Superconducting nonlinear thermoelectric warmth engine. Phys. Rev. B 101, 214509 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Giazotto, F., Paolucci, F., Braggio, A., Marchegiani, G. & Germanese G. Superconducting bipolar thermoelectric reminiscence and technique for writing a superconducting bipolar thermoelectric reminiscence. Italian patent: 102021000032042 (2021).

  • Kemppinen, A. et al. Suppression of the important present of a balanced superconducting quantum interference machine. Appl. Phys. Lett. 92, 052110 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Fornieri, A., Blanc, C., Bosisio, R., D’Ambrosio, S. & Giazotto, F. Nanoscale part engineering of thermal transport with a Josephson warmth modulator. Nat. Nanotechnol. 11, 258–262 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Giazotto, F., Heikkilä, T. T., Luukanen, A., Savin, A. M. & Pekola, J. P. Alternatives for mesoscopics in thermometry and refrigeration: physics and purposes. Rev. Mod. Phys. 78, 217 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Fornieri, A. & Giazotto, F. In the direction of phase-coherent caloritronics in superconducting circuits. Nat. Nanotechnol. 12, 944–952 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Aronov, A. G. & Spivak, B. Z. Photoeffect in a Josephson junction. JETP Lett. 22, 101–102 (1975).


    Google Scholar
     

  • Gershenzon, M. E. & Falei, M. I. Absolute destructive resistance of a tunnel contact between superconductors with a nonequilibrium quasiparticle distribution operate. JETP Lett. 44, 682–686 (1986).


    Google Scholar
     

  • Bogoliubov, N. N. Lectures on Quantum Statistics (Gordon and Breach, 1970).

  • Strocchi, F. Symmetry Breaking (Springer, 2008).

  • Timofeev, A. V. et al. Recombination-limited vitality rest in a Bardeen-Cooper-Schrieffer superconductor. Phys. Rev. Lett. 102, 017003 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Ladd, T. D. et al. Quantum computer systems. Nature 464, 45–53 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Siddiqi, I. Engineering high-coherence superconducting qubits. Nat. Rev. Mater. 6, 875–891 (2021).

    Article 

    Google Scholar
     

  • Polini, M. et al. Supplies and gadgets for basic quantum science and quantum applied sciences. Preprint at arXiv https://doi.org/10.48550/arXiv.2201.09260 (2022).

  • Braginski, A. I. Superconductor electronics: standing and outlook. J. Supercond. Nov. Magn. 32, 23–44 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Heikkilä, T. T. et al. Thermoelectric radiation detector based mostly on superconductor-ferromagnet techniques. Phys. Rev. Appl. 10, 034053 (2018).

    Article 

    Google Scholar
     

  • Martinez-Perez, M. J. & Giazotto, F. A quantum diffractor for thermal flux. Nat. Commun. 5, 3579 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Tinkham, M. Introduction to Superconductivity (McGraw-Hill,1996).

  • Dynes, R. C., Garno, J. P., Hertel, G. B. & Orlando, T. P. Tunneling research of superconductivity close to the metal-insulator transition. Phys. Rev. Lett. 53, 2437–2440 (1984).

    CAS 
    Article 

    Google Scholar
     

  • Shapiro, S., Smith, P. H., Nicol, J., Miles, J. L. & Robust, P. F. Superconductivity and electron tunneling. IBM J. Res. Dev. 6, 34–43 (1962).

    CAS 
    Article 

    Google Scholar