Engineering nanoscale hypersonic phonon transport


  • Krause, A. G., Winger, M., Blasius, T. D., Lin, Q. & Painter, O. A high-resolution microchip optomechanical accelerometer. Nat. Photon. 6, 768–772 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Chaste, J. et al. A nanomechanical mass sensor with yoctogram decision. Nat. Nanotechnol. 7, 301–304 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Gavartin, E., Verlot, P. & Kippenberg, T. J. A hybrid on-chip optomechanical transducer for ultrasensitive power measurements. Nat. Nanotechnol. 7, 509–514 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Teufel, J. D. et al. Sideband cooling of micromechanical movement to the quantum floor state. Nature 475, 359–363 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum floor state. Nature 478, 89–92 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Sigalas, M. & Economou, E. N. Band construction of elastic waves in two dimensional methods. Strong State Commun. 86, 141–143 (1993).

    CAS 
    Article 

    Google Scholar
     

  • Kushwaha, M. S., Halevi, P., Dobrzynski, L. & Djafari-Rouhani, B. Acoustic band construction of periodic elastic composites. Phys. Rev. Lett. 71, 2022 (1993).

    CAS 
    Article 

    Google Scholar
     

  • Martínez-Sala, R. et al. Sound attenuation by sculpture. Nature 378, 241 (1995).

    Article 

    Google Scholar
     

  • Gorishnyy, T., Ullal, C. Okay., Maldovan, M., Fytas, G. & Thomas, E. L. Hypersonic phononic crystals. Phys. Rev. Lett. 94, 115501 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Zen, N., Puurtinen, T. A., Isotalo, T. J., Chaudhuri, S. & Maasilta, I. J. Engineering thermal conductance utilizing a two-dimensional phononic crystal. Nat. Commun. 5, 3435 (2014).

    Article 

    Google Scholar
     

  • Eichenfield, M., Chan, J., Camacho, R. M., Vahala, Okay. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Djafari-Rouhani, B., El-Jallal, S. & Pennec, Y. Phoxonic crystals and cavity optomechanics. C. R. Phys. 17, 555–564 (2016).

    CAS 
    Article 

    Google Scholar
     

  • MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840–843 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Fang, Okay., Matheny, M. H., Luan, X. & Painter, O. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat. Photon. 10, 489–496 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Patel, R. N. et al. Single mode phononic wire. Phys. Rev. Lett. 121, 040501 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Ren, H. et al. Two-dimensional optomechanical crystal cavity with excessive quantum cooperativity. Nat. Commun. 11, 3373 (2020).

    Article 

    Google Scholar
     

  • Gomis-Bresco, J. et al. A one-dimensional optomechanical crystal with an entire phononic band hole. Nat. Commun. 5, 4452 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Mohammadi, S., Eftekhar, A. A., Khelif, A., Hunt, W. D. & Adibi, A. Proof of enormous excessive frequency full phononic band gaps in silicon phononic crystal plates. Appl. Phys. Lett. 92, 221905 (2008).

    Article 

    Google Scholar
     

  • Soliman, Y. M. et al. Phononic crystals working within the gigahertz vary with extraordinarily huge band gaps. Appl. Phys. Lett. 97, 193502 (2010).

    Article 

    Google Scholar
     

  • Gorisse, M. et al. Commentary of band gaps within the gigahertz vary and deaf bands in a hypersonic aluminum nitride phononic crystal slab. Appl. Phys. Lett. 98, 234103 (2011).

    Article 

    Google Scholar
     

  • Benchabane, S. et al. Steerage of floor waves in a micron-scale phononic crystal line-defect waveguide. Appl. Phys. Lett. 106, 081903 (2015).

    Article 

    Google Scholar
     

  • Otsuka, P. H. et al. Broadband evolution of phononic-crystal-waveguide eigenstates in real- and k-spaces. Sci. Rep. 3, 3351 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Cheng, W., Wang, J., Jonas, U., Fytas, G. & Stefanou, N. Commentary and tuning of hypersonic bandgaps in colloidal crystals. Nat. Mater. 5, 830–836 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Graczykowski, B. et al. Phonon dispersion in hypersonic two-dimensional phononic crystal membranes. Phys. Rev. B 91, 075414 (2015).

    Article 

    Google Scholar
     

  • Liu, Q., Li, H. & Li, M. Electromechanical Brillouin scattering in built-in optomechanical waveguides. Optica 6, 778–785 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Söllner, I., Midolo, L. & Lodahl, P. Deterministic single-phonon supply triggered by a single photon. Phys. Rev. Lett. 116, 234301 (2016).

    Article 

    Google Scholar
     

  • Arregui, G., Navarro-Urrios, D., Kehagias, N., SotomayorTorres, C. M. & García, P. D. All-optical radio-frequency modulation of Anderson-localized modes. Phys. Rev. B 98, 180202 (2018).

  • COMSOL Multiphysics v.5.1 (COSMOL Inc., 2022).

  • Safavi-Naeini, A. H. & Painter, O. Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab. Decide. Categorical 18, 14926–14943 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Kargar, F. & Balandin, A. A. Advances in Brillouin–Mandelstam light-scattering spectroscopy. Nat. Photon. 15, 720–731 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Carlotti, G. Elastic characterization of clear and opaque movies, multilayers and acoustic resonators by floor Brillouin scattering: a evaluate. Appl. Sci. 8, 124 (2018).

    Article 

    Google Scholar
     

  • Boyd, R. W. Nonlinear Optics third edn (Tutorial Press, 2008).

  • Johnson, S. G. et al. Perturbation concept for Maxwell’s equations with shifting materials boundaries. Phys. Rev. E 65, 066611 (2002).

    Article 

    Google Scholar
     

  • Van Laer, R., Kuyken, B., Van Thourhout, D. & Baets, R. Interplay between gentle and extremely confined hypersound in a silicon photonic nanowire. Nat. Photon. 9, 199–203 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Florez, O. et al. Brillouin scattering self-cancellation. Nat. Commun. 7, 11759 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Cuffe, J. et al. Phonons in gradual movement: dispersion relations in ultrathin Si membranes. Nano Lett. 12, 3569–3573 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Brillouin, L. Diffusion de la lumière et des rayons X par un corps clear homogène. Ann. Phys. 9, 88–122 (1922).

    Article 

    Google Scholar
     

  • Loudon, R. & Sandercock, J. R. Evaluation of the light-scattering cross part for floor ripples on solids. J. Phys. C 13, 2609 (1980).

    CAS 
    Article 

    Google Scholar
     

  • Shin, H. et al. Management of coherent info by way of on-chip photonic-phononic emitter-receivers. Nat. Commun. 6, 6427 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Gurlek, B., Sandoghdar, V. & Martin-Cano, D. Engineering long-lived vibrational states for an natural molecule. Phys. Rev. Lett. 127, 123603 (2021).

    CAS 
    Article 

    Google Scholar