In vitro magnetosome remineralization for silver-magnetite hybrid magnetosome biosynthesis and used for therapeutic of the contaminated wound | Journal of Nanobiotechnology


  • Ridgwell A, Zeebe R. The position of the worldwide carbonate cycle within the regulation and evolution of the Earth system. Earth Planet Sci Lett. 2005;234(3–4):299–315.

    CAS 
    Article 

    Google Scholar
     

  • Blackmore R. Magnetotactic micro organism. Science. 1975;190:377–9.

    Article 

    Google Scholar
     

  • Amor M, Busigny V, Louvat P, Gélabert A, Cartigny P, Durand-Dubief M, Ona-Nguema G, Alphandéry E, Chebbi I, Guyot F. Mass-dependent and -independent signature of Fe isotopes in manetotactic micro organism. Science. 2016;352:705–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Frankel RB. Magnetic steering of organisms. Annu Rev Biophys Bioeng. 1984;13:85–103.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Frankel RB, Blackmore RP, Torres De Araujo FF, Danon J. Magnetotactic micro organism on the geomagnetic equator. Science. 1981;212:1269–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Blakemore RP. Magnetotactic micro organism. Science. 1982;36:217–38.

    CAS 

    Google Scholar
     

  • Imlay JA. Pathways of oxidative harm. Annu Rev Microbiol. 2003;57:395–418.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Byrne JM, Klueglein N, Pearce C, Rosso KM, Appel E, Kappler A. Redox biking of Fe(II) and Fe(III) in magnetite by Fe-metabolizing micro organism. Science. 2015;347:1473–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guo FF, Yang W, Jiang W, Geng S, Peng T, Li JL. Magnetosomes get rid of intracellular reactive oxygen species in Magnetospirillum gryphiswaldense MSR-1. Environ Microbiol. 2012;14(7):1722–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li Okay, Chen C, Chen C, Wang Y, Wei Z, Pan W, et al. Magnetosomes extracted from Magnetospirillum magneticum pressure AMB-1 confirmed enhanced peroxidase-like exercise underneath visible-light irradiation. Enzyme Microb Technol. 2015;72:72–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schuerle S, Soleimany AP, Yeh T, Anand GM, Haberli M, Fleming HE, et al. Artificial and residing micropropellers for convection-enhanced nanoparticle transport. Sci Adv. 2019;5(4):eaav4803.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Felfoul O, Mohammadi M, Taherkhani S, de Lanauze D, Zhong XuY, Loghin D, et al. Magneto-aerotactic micro organism ship drug-containing nanoliposomes to tumour hypoxic areas. Nat Nanotechnol. 2016;11(11):941–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xing J, Yin T, Li S, Xu T, Ma A, Chen Z, et al. Sequential magneto-actuated and optics-triggered biomicrorobots for focused most cancers remedy. Adv Funct Mater. 2020. https://doi.org/10.1002/adfm.202008262.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taherkhani S, Mohammadi M, Daoud J, Martel S, Tabrizian M. Covalent binding of nanoliposomes to the floor of magnetotactic micro organism for the synthesis of self-propelled therapeutic brokers. ACS Nano. 2014;8(5):5049–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu J, Liu L, He J, Ma S, Li S, Wang Z, et al. Engineered magnetosomes fused to practical molecule (protein A) present a extremely efficient different to industrial immunomagnetic beads. J Nanobiotechnol. 2019;17(1):37.

    Article 

    Google Scholar
     

  • He J, Tian J, Xu J, Wang Okay, Li J, Gee SJ, et al. Robust and oriented conjugation of nanobodies onto magnetosomes for the event of a fast immunomagnetic assay for the environmental detection of tetrabromobisphenol-A. Anal Bioanal Chem. 2018;410(25):6633–42.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xiang Z, Yang X, Xu J, Lai W, Wang Z, Hu Z, et al. Tumor detection utilizing magnetosome nanoparticles functionalized with a newly screened EGFR/HER2 focusing on peptide. Biomaterials. 2017;115:53–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang C, Xu C, Zeng H, Solar S. Latest progress in syntheses and purposes of Dumbbell-like nanoparticles. Adv Mater. 2009;21(30):3045–52.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Maddinedi SB. Inexperienced synthesis of Au-Cu2-xSe heterodimer nanoparticles and their in-vitro cytotoxicity, photothermal assay. Environ Toxicol Pharmacol. 2017;53:29–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kuo TR, Hung ST, Lin YT, Chou TL, Kuo MC, Kuo YP, et al. Inexperienced synthesis of InP/ZnS core/shell quantum dots for utility in heavy-metal-free light-emitting diodes. Nanoscale Res Lett. 2017;12(1):537.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Martins LHS, Rai M, Neto JM, Oliveira JAR, Martins JHS, Komesu A, Debora Moreira KT, Gomes PWP. Nanomaterials: properties, toxicity, security, and drug supply. In: Rai M, Santos CA, editors. Nanotechnology utilized to pharmaceutical expertise. Springer: Cham; 2017. p. 363–81.

    Chapter 

    Google Scholar
     

  • Tri PN, Ouellet-Plamondon C, Rtimi S, Assadi AA, Nguyen TA. Strategies for synthesis of hybrid nanoparticles. In: Mohapatra S, Nguyen TA, Nguyen-Tri P, editors. Noble metal-metal oxide hybrid nanoparticles: fundamentals and purposes. Woodhead Publishing: UK; 2018. p. 3–6.


    Google Scholar
     

  • Barabadi H. Nanobiotechnology: a promising scope of gold biotechnology. Cell Mol Biol (Noisy-le-grand). 2017;63(12):3–4.

    Article 

    Google Scholar
     

  • Soni V, Raizada P, Singh P, Cuong HN, Rangabhashiyam S, Saini A, et al. Sustainable and inexperienced traits in utilizing plant extracts for the synthesis of biogenic metallic nanoparticles towards environmental and pharmaceutical advances: a evaluation. Environ Res. 2021;202: 111622.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Saravanan M, Barabadi H, Vahidi H. Inexperienced nanotechnology: isolation of bioactive molecules and modified method of biosynthesis. In: Patra C, Ahmad I, Ayaz M, Khalil AT, Mukherjee S, Ovais M, editors. Biogenic nanoparticles for most cancers theranostics. Asterdam: Elsevier Inc; 2021.


    Google Scholar
     

  • Marcano L, Muñoz D, Martín-Rodríguez R, Orue I, Alonso J, García-Prieto A, et al. Magnetic examine of Co-doped magnetosome chains. J Phys Chem C. 2018;122(13):7541–50.

    CAS 
    Article 

    Google Scholar
     

  • Munoz D, Marcano L, Martin-Rodriguez R, Simonelli L, Serrano A, Garcia-Prieto A, et al. Magnetosomes might be protecting shields in opposition to metallic stress in magnetotactic micro organism. Sci Rep. 2020;10(1):11430.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li W, Zeng G, Yan J, Liu X, Jiang X, Yang J, et al. One-pot inexperienced synthesis of I@CNDs-Fe3O4 hybrid nanoparticles from kelp for multi-modal imaging in vivo. Mater Sci Eng C Mater Biol Appl. 2021;124: 112037.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Staniland S, Williams W, Telling N, Van Der Laan G, Harrison A, Ward B. Managed cobalt doping of magnetosomes in vivo. Nat Nanotechnol. 2008;3(3):158–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Alphandéry E, Carvallo C, Menguy N, Chebbi I. Chains of cobalt doped magnetosomes extracted from AMB-1 magnetotactic micro organism for utility in different magnetic discipline most cancers remedy. J Phys Chem C. 2011;115(24):11920–4.

    Article 
    CAS 

    Google Scholar
     

  • Li W, Guo F, Ling H, Zhang P, Yi M, Wang L, et al. Excessive-performance nonvolatile natural field-effect transistor reminiscence based mostly on natural semiconductor heterostructures of pentacene/P13/pentacene as each cost transport and trapping layers. Adv Sci (Weinh). 2017;4(8):1700007.

    Article 
    CAS 

    Google Scholar
     

  • Ali I, Peng C, Khan ZM, Naz I. Yield cultivation of magnetotactic micro organism and magnetosomes: a evaluation. J Fundamental Microbiol. 2017;57(8):643–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yan X, Zhang DW, Liu C, Bao W, Wang S, Ding S, et al. Excessive efficiency amplifier ingredient realization by way of MoS2/GaTe heterostructures. Adv Sci (Weinh). 2018;5(4):1700830.

    Article 
    CAS 

    Google Scholar
     

  • Kashyap M, Samadhiya Okay, Ghosh A, Anand V, Lee H, Sawamoto N, et al. Synthesis, characterization and utility of intracellular Ag/AgCl nanohybrids biosynthesized in Scenedesmus sp. as impartial lipid inducer and antibacterial agent. Environ Res. 2021;201: 111499.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Taubes G. The micro organism struggle again. Science. 2008;321:356–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lakkim V, Reddy MC, Pallavali RR, Reddy KR, Reddy CV, Inamuddin AL, Bilgrami DL. Inexperienced synthesis of silver nanoparticles and analysis of their antibacterial exercise in opposition to multidrug-resistant micro organism and wound therapeutic efficacy utilizing a murine mannequin. Antibiotics. 2020;9(12):902. https://doi.org/10.3390/antibiotics9120902.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Wright GD. The antibiotic resistome: the nexus of chemical and genetic range. Nat Rev Microbiol. 2007;5(3):175–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang X, Yang J, Wang L, Ran B, Jia Y, Zhang L, et al. Pharmaceutical intermediate-modified gold nanoparticles: in opposition to multidrug-resistant micro organism and wound-healing utility by way of an electrospun scaffold. ACS Nano. 2017;11(6):5737–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pang Q, Lou D, Li S, Wang G, Qiao B, Dong S, et al. Sensible versatile electronics-integrated wound dressing for real-time monitoring and on-demand therapy of contaminated wounds. Adv Sci (Weinh). 2020;7(6):1902673.

    CAS 
    Article 

    Google Scholar
     

  • Wang S, Zheng H, Zhou L, Cheng F, Liu Z, Zhang H, et al. Nanoenzyme-reinforced injectable hydrogel for therapeutic diabetic wounds contaminated with multidrug resistant micro organism. Nano Lett. 2020;20(7):5149–58.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu J, Zhu J, Wu Q, An Y, Wang Okay, Xuan T, et al. Mussel-inspired floor immobilization of heparin on magnetic nanoparticles for enhanced wound restore by way of sustained launch of a progress issue and M2 macrophage polarization. ACS Appl Mater Interfaces. 2021;13(2):2230–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: synthesis, medical purposes and biosafety. Theranostics. 2020;10(20):8996–9031.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Thangavel P, Ramachandran B, Chakraborty S, Kannan R, Lonchin S, Muthuvijayan V. Accelerated therapeutic of diabetic wounds handled with L-glutamic acid loaded hydrogels by way of enhanced collagen deposition and angiogenesis: an in vivo examine. Sci Rep. 2017;7(1):10701.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Guo F, Liu Y, Chen Y, Tang T, Jiang W, Li Y, et al. A novel fast and steady process for large-scale purification of magnetosomes from Magnetospirillum gryphiswaldense. Appl Microbiol Biotechnol. 2011;90(4):1277–83.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Honda T, Tanaka T, Yoshino T. Stoichiometrically managed immobilization of a number of enzymes on magnetic nanoparticles by the magnetosome show system for environment friendly cellulose hydrolysis. Biomacromol. 2015;16(12):3863–8.

    CAS 
    Article 

    Google Scholar
     

  • Zhang L, Dou YH, Gu HC. Synthesis of Ag-Fe3O4 heterodimeric nanoparticles. J Colloid Interface Sci. 2006;297(2):660–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gu HW, Yang ZM, Gao JH, Chang CK, Xu B. Heterodimers of nanoparticles: formation at a liquid–liquid interface and particle-specific floor modification by practical molecules. J Am Chen Soc. 2005;127:34–5.

    CAS 
    Article 

    Google Scholar
     

  • Zhang H, Yang Z, Ju Y, Chu X, Ding Y, Huang X, et al. Galvanic displacement synthesis of monodisperse janus- and satellite-like plasmonic-magnetic Ag-Fe@Fe3O4 heterostructures with decreased cytotoxicity. Adv Sci (Weinh). 2018;5(8):1800271.

    Article 
    CAS 

    Google Scholar
     

  • Das MC, Sandhu P, Gupta P, Rudrapaul P, De UC, Tribedi P, et al. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: a combinatorial examine with azithromycin and gentamicin. Sci Rep. 2016;6:23347.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rishi P, Vij S, Maurya IK, Kaur UJ, Bharati S, Tewari R. Peptides as adjuvants for ampicillin and oxacillin in opposition to methicillin-resistant Staphylococcus aureus (MRSA). Microb Pathog. 2018;124:11–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sader HS, Jones RN. Complete in vitro analysis of cefepime mixed with aztreonam or ampicillin/sulbactam in opposition to multi-drug resistant Pseudomonas aeruginosa and Acinetobacter spp. Int J Antimicrob Brokers. 2005;25(5):380–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hassoun-Kheir N, Stabholz Y, Kreft JU, de la Cruz R, Romalde JL, Nesme J, et al. Comparability of antibiotic-resistant micro organism and antibiotic resistance genes abundance in hospital and neighborhood wastewater: a scientific evaluation. Sci Complete Environ. 2020;743: 140804.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Imran M, Jha SK, Hasan N, Insaf A, Shrestha J, Shrestha J, et al. Overcoming multidrug resistance of antibiotics by way of nanodelivery programs. Pharmaceutics. 2022. https://doi.org/10.3390/pharmaceutics14030586.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The antibacterial mechanism of silver nanoparticles and its utility in dentistry. Int J Nanomed. 2020;15:2555–62.

    CAS 
    Article 

    Google Scholar
     

  • Vila Dominguez A, AyerbeAlgaba R, Miro Canturri A, Rodriguez Villodres A, Smani Y. Antibacterial exercise of colloidal silver in opposition to gram-negative and gram-positive micro organism. Antibiotics (Basel). 2020. https://doi.org/10.3390/antibiotics9010036.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hadrup N, Sharma AK, Loeschner Okay. Toxicity of silver ions, metallic silver, and silver nanoparticle supplies after in vivo dermal and mucosal floor publicity: a evaluation. Regul Toxicol Pharmacol. 2018;98:257–67.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Abdulsada Z, Kibbee R, Schwertfeger D, Princz J, DeRosa M, Ormeci B. Destiny and elimination of silver nanoparticles throughout sludge conditioning and their influence on soil well being after simulated land utility. Water Res. 2021;206: 117757.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Panacek A, Kvitek L, Smekalova M, Vecerova R, Kolar M, Roderova M, et al. Bacterial resistance to silver nanoparticles and how one can overcome it. Nat Nanotechnol. 2018;13(1):65–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pieretti JC, Goncalves MC, Nakazato G, Santos de Souza AC, Boudier A, Seabra AB. Multifunctional hybrid nanoplatform based mostly on Fe3O4@Ag NPs for nitric oxide supply: growth, characterization, therapeutic efficacy, and hemocompatibility. J Mater Sci Mater Med. 2021;32(3):23.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ghaseminezhad SM, Shojaosadati SA, Meyer RL. Ag/Fe3O4 nanocomposites penetrate and eradicate S. aureus biofilm in an in vitro power wound mannequin. Colloids Surf B Biointerfaces. 2018;163:192–200.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bassetti S, Tschudin-Sutter S, Egli A, Osthoff M. Optimizing antibiotic therapies to cut back the chance of bacterial resistance. Eur J Intern Med. 2022. https://doi.org/10.1016/j.ejim.2022.01.029.

    Article 
    PubMed 

    Google Scholar
     

  • Mikhailova EO. Silver nanoparticles: mechanism of motion and possible bio-application. J Funct Biomater. 2020. https://doi.org/10.3390/jfb11040084.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright JA, Richards T, Srai SK. The position of iron within the pores and skin and cutaneous wound therapeutic. Entrance Pharmacol. 2014;5:156.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Belvedere R, Pessolano E, Novizio N, Tosco A, Eletto D, Porta A, et al. The promising pro-healing position of the affiliation of mesoglycan and lactoferrin on pores and skin lesions. Eur J Pharm Sci. 2021;163: 105886.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yu N, Cai T, Solar Y, Jiang C, Xiong H, Li Y, et al. A novel antibacterial agent based mostly on AgNPs and Fe3O4 loaded chitin microspheres with peroxidase-like exercise for synergistic antibacterial exercise and wound-healing. Int J Pharm. 2018;552(1–2):277–87.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Friedrich RP, Cicha I, Alexiou C. Iron oxide nanoparticles in regenerative drugs and tissue engineering. Nanomaterials (Basel). 2021. https://doi.org/10.3390/nano11092337.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vargas G, Cypriano J, Correa T, Leao P, Bazylinski DA, Abreu F. Functions of magnetotactic micro organism, magnetosomes and magnetosome crystals in biotechnology and nanotechnology: mini-review. Molecules. 2018. https://doi.org/10.3390/molecules23102438.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathuriya AS. Magnetotactic micro organism: nanodrivers of the long run. Crit Rev Biotechnol. 2015;36(5):788–802.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Sanchez LM, Alvarez VA. Advances in magnetic noble metallic/iron-based oxide hybrid nanoparticles as biomedical units. Bioengineering (Basel). 2019. https://doi.org/10.3390/bioengineering6030075.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amor M, Ceballos A, Wan J, Simon CP, Aron AT, Chang CJ, et al. Magnetotactic micro organism accumulate a big pool of iron distinct from their magnetite crystals. Appl Environ Microbiol. 2020. https://doi.org/10.1128/AEM.01278-20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Zhang X, Jiang W, Li Y, Li J. Semicontinuous tradition of Magnetospirillum gryphiswaldense MSR-1 cells in an autofermentor by nutrient-balanced and isosmotic feeding methods. Appl Environ Microbiol. 2011;77(17):5851–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Suppi S, Kasemets Okay, Ivask A, Kunnis-Beres Okay, Sihtmae M, Kurvet I, et al. A novel methodology for comparability of biocidal properties of nanomaterials to micro organism, yeasts and algae. J Hazard Mater. 2015;286:75–84.

    CAS 
    PubMed 
    Article 

    Google Scholar