Saturday, September 24, 2022
HomeNanotechnologyMechanisms of chemotherapeutic resistance and the appliance of focused nanoparticles for enhanced...

Mechanisms of chemotherapeutic resistance and the appliance of focused nanoparticles for enhanced chemotherapy in colorectal most cancers | Journal of Nanobiotechnology


  • Illian DN, et al. Present standing, distribution, and future instructions of pure merchandise in opposition to colorectal most cancers in Indonesia: a scientific assessment. Molecules. 2021;26(16):4984.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shaukat A, et al. Endoscopic recognition and administration methods for malignant colorectal polyps: suggestions of the US multi-society activity power on colorectal most cancers. Gastroenterology. 2020;159(5):1916-1934.e2.

    PubMed 
    Article 

    Google Scholar
     

  • Carethers JM, Doubeni CA. Causes of socioeconomic disparities in colorectal most cancers and intervention framework and techniques. Gastroenterology. 2020;158(2):354–67.

    PubMed 
    Article 

    Google Scholar
     

  • Veettil SK, et al. Position of food regimen in colorectal most cancers incidence: umbrella assessment of meta-analyses of potential observational research. JAMA Netw Open. 2021;4(2):e2037341.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Service provider J, et al. Ideas and prospects of minimally invasive colorectal most cancers surgical procedure. Clin Radiol. 2021;76(12):889–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu X, et al. Postoperative adjuvant chemotherapy for stage II colorectal most cancers: a scientific assessment of 12 randomized managed trials. J Gastrointest Surg. 2012;16(3):646–55.

    PubMed 
    Article 

    Google Scholar
     

  • Bregni G, et al. Adjuvant chemotherapy for rectal most cancers: present proof and proposals for scientific apply. Most cancers Deal with Rev. 2020;83:101948.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang N, et al. 5-Fluorouracil: mechanisms of resistance and reversal methods. Molecules. 2008;13(8):1551–69.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hsu HH, et al. Oxaliplatin resistance in colorectal most cancers cells is mediated through activation of ABCG2 to alleviate ER stress induced apoptosis. J Cell Physiol. 2018;233(7):5458–67.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nikolouzakis TK, et al. Impact of systemic therapy on the micronuclei frequency within the peripheral blood of sufferers with metastatic colorectal most cancers. Oncol Lett. 2019;17(3):2703–12.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells within the tumour microenvironment. Nat Rev Immunol. 2015;15(11):669–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • He Y, et al. Tumor-associated extracellular matrix: the best way to be a possible aide to anti-tumor immunotherapy? Entrance Cell Dev Biol. 2021;9:739161.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Valkenburg KC, de Groot AE, Pienta KJ. Concentrating on the tumour stroma to enhance most cancers remedy. Nat Rev Clin Oncol. 2018;15(6):366–81.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huang P, et al. Nano-, micro-, and macroscale drug supply methods for most cancers immunotherapy. Acta Biomater. 2019;85:1–26.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pelaz B, et al. Numerous functions of nanomedicine. ACS Nano. 2017;11(3):2313–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Oroojalian F, et al. Immune cell membrane-coated biomimetic nanoparticles for focused most cancers remedy. Small. 2021;17(12):e2006484.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Chen D, et al. Anti-vascular nano brokers: a promising strategy for most cancers therapy. J Mater Chem B. 2020;8(15):2990–3004.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Khalaf Ok, et al. Features of the tumor microenvironment concerned in immune resistance and drug resistance. Entrance Immunol. 2021;12:656364.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Najafi M, Farhood B, Mortezaee Ok. Extracellular matrix (ECM) stiffness and degradation as most cancers drivers. J Cell Biochem. 2019;120(3):2782–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cox TR. The matrix in most cancers. Nat Rev Most cancers. 2021;21(4):217–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kishore C, Bhadra P. Present developments and future views of immunotherapy in colorectal most cancers analysis. Eur J Pharmacol. 2021;893:173819.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol. 2005;205(2):275–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001;11(7):1156–66.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mrozikiewicz-Rakowska B, et al. The MDR1/ABCB1 gene rs 1045642 polymorphism in colorectal most cancers. Arch Med Sci. 2020;16(1):112–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Beklen H, et al. Drug repositioning for P-glycoprotein mediated co-expression networks in colorectal most cancers. Entrance Oncol. 2020;10:1273.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang B, et al. MiR-26b regulates 5-FU-resistance in human colorectal most cancers through down-regulation of Pgp. Am J Most cancers Res. 2018;8(12):2518–27.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong KY, et al. Mixture antitumor impact of sorafenib through calcium-dependent deactivation of focal adhesion kinase focusing on colorectal most cancers cells. Molecules. 2020;25(22):5299.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morris VK, Bekaii-Saab T. Enhancements in scientific outcomes for BRAF(V600E) -mutant metastatic colorectal most cancers. Clin Most cancers Res. 2020;26(17):4435–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Loriot Y, et al. Are RAS mutations predictive markers of resistance to straightforward chemotherapy? Nat Rev Clin Oncol. 2009;6(9):528–34.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Goldstein M, Kastan MB. The DNA injury response: implications for tumor responses to radiation and chemotherapy. Annu Rev Med. 2015;66:129–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang D, Lippard SJ. Mobile processing of platinum anticancer medication. Nat Rev Drug Discov. 2005;4(4):307–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reilly NM, et al. Exploiting DNA restore defects in colorectal most cancers. Mol Oncol. 2019;13(4):681–700.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mauri G, et al. The DNA injury response pathway as a land of therapeutic alternatives for colorectal most cancers. Ann Oncol. 2020;31(9):1135–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: previous, current, and the long run. Cell. 2017;168(4):613–28.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sagaert X, Vanstapel A, Verbeek S. Tumor heterogeneity in colorectal most cancers: what do we all know to this point? Pathobiology. 2018;85(1–2):72–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nishikawa G, et al. Bone marrow-derived mesenchymal stem cells promote colorectal most cancers development through CCR5. Cell Loss of life Dis. 2019;10(4):264.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Mele V, et al. Mesenchymal stromal cells induce epithelial-to-mesenchymal transition in human colorectal most cancers cells by the expression of surface-bound TGF-β. Int J Most cancers. 2014;134(11):2583–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ma X, et al. IL-8/CXCR2 mediates tropism of human bone marrow-derived mesenchymal stem cells towards CD133(+) /CD44(+) Colon most cancers stem cells. J Cell Physiol. 2021;236(4):3114–28.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fontanella R, et al. A novel antagonist of CXCR4 prevents bone marrow-derived mesenchymal stem cell-mediated osteosarcoma and hepatocellular carcinoma cell migration and invasion. Most cancers Lett. 2016;370(1):100–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ma X, et al. Mesenchymal stem cells preserve the stemness of colon most cancers stem cells through interleukin-8/mitogen-activated protein kinase signaling pathway. Exp Biol Med (Maywood). 2020;245(6):562–75.

    CAS 
    Article 

    Google Scholar
     

  • Lin J-T, et al. Colon most cancers mesenchymal stem cells modulate the tumorigenicity of colon most cancers by interleukin 6. Exp Cell Res. 2013;319(14):2216–29.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang X, et al. Human colorectal cancer-derived mesenchymal stem cells promote colorectal most cancers development by IL-6/JAK2/STAT3 signaling. Cell Loss of life Dis. 2018;9(2):25.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wu XB, et al. Mesenchymal stem cells promote colorectal most cancers development by AMPK/mTOR-mediated NF-κB activation. Sci Rep. 2016;6:21420.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li S, et al. Extracellular vesicles-derived microRNA-222 promotes immune escape through interacting with ATF3 to manage AKT1 transcription in colorectal most cancers. BMC Most cancers. 2021;21(1):349.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Raz Y, et al. Bone marrow-derived fibroblasts are a functionally distinct stromal cell inhabitants in breast most cancers. J Exp Med. 2018;215(12):3075–93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ren J, et al. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal most cancers by transferring exosomal lncRNA H19. Theranostics. 2018;8(14):3932–48.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tan MC, et al. Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor progress in a murine mannequin of pancreatic most cancers. J Immunol. 2009;182(3):1746–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Monteran L, Erez N. The darkish facet of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression within the tumor microenvironment. Entrance Immunol. 2019;10:1835.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bu L, et al. Useful variety of cancer-associated fibroblasts in modulating drug resistance. Most cancers Sci. 2020;111(10):3468–77.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Izumi D, et al. TIAM1 promotes chemoresistance and tumor invasiveness in colorectal most cancers. Cell Loss of life Dis. 2019;10(4):267.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Altadill A, et al. Relationship between metalloprotease-7 and -14 and tissue inhibitor of metalloprotease 1 expression by mucosal stromal cells and colorectal most cancers growth in inflammatory bowel illness. Biomedicines. 2021;9(5):495.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hartmann N, et al. Prevailing function of contact steering in intrastromal T-cell trapping in human pancreatic most cancers. Clin Most cancers Res. 2014;20(13):3422–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shevach EM. Garp as a therapeutic goal for modulation of T regulatory cell operate. Knowledgeable Opin Ther Targets. 2017;21(2):191–200.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rizzo A, et al. RORγt-expressing tregs drive the expansion of colitis-associated colorectal most cancers by controlling IL6 in dendritic cells. Most cancers Immunol Res. 2018;6(9):1082–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ma X, et al. M2-type macrophages induce tregs era by activating the TGF-β/Smad signalling pathway to advertise colorectal most cancers growth. Onco Targets Ther. 2021;14:5391–402.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Salem M, et al. GARP dampens most cancers immunity by sustaining operate and accumulation of regulatory T cells within the colon. Most cancers Res. 2019;79(6):1178–90.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huang C, et al. Interleukin 35 expression correlates with microvessel density in pancreatic ductal adenocarcinoma, recruits monocytes, and promotes progress and angiogenesis of xenograft tumors in mice. Gastroenterology. 2018;154(3):675–88.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Saraiva M, O’Garra A. The regulation of IL-10 manufacturing by immune cells. Nat Rev Immunol. 2010;10(3):170–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ning T, et al. Exosomal miR-208b associated with oxaliplatin resistance promotes Treg growth in colorectal most cancers. Mol Ther. 2021;29(9):2723–36.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhan Y, et al. PLA2G4A promotes right-sided colorectal most cancers development by inducing CD39+γδ Treg polarization. JCI Perception. 2021;6(16):e148028.

    PubMed Central 
    Article 

    Google Scholar
     

  • Hu G, et al. Tumor-infiltrating CD39(+)γδTregs are novel immunosuppressive T cells in human colorectal most cancers. Oncoimmunology. 2017;6(2):e1277305.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ye L, et al. Tumor-infiltrating immune cells act as a marker for prognosis in colorectal most cancers. Entrance Immunol. 2019;10:2368.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yin Y, et al. The immune-microenvironment confers chemoresistance of colorectal most cancers by macrophage-derived IL6. Clin Most cancers Res. 2017;23(23):7375–87.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Del Cornò M, et al. Transcriptome profiles of human visceral adipocytes in weight problems and colorectal most cancers unravel the results of physique mass index and polyunsaturated fatty acids on genes and organic processes associated to tumorigenesis. Entrance Immunol. 2019;10:265.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ko JH, et al. Conditioned media from adipocytes promote proliferation, migration, and invasion in melanoma and colorectal most cancers cells. J Cell Physiol. 2019;234(10):18249–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Catalán V, et al. Up-regulation of the novel proinflammatory adipokines lipocalin-2, chitinase-3 like-1 and osteopontin in addition to angiogenic-related elements in visceral adipose tissue of sufferers with colon most cancers. J Nutr Biochem. 2011;22(7):634–41.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Peterson JE, et al. VEGF, PF4 and PDGF are elevated in platelets of colorectal most cancers sufferers. Angiogenesis. 2012;15(2):265–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rokavec M, et al. IL-6R/STAT3/miR-34a suggestions loop promotes EMT-mediated colorectal most cancers invasion and metastasis. J Clin Make investments. 2014;124(4):1853–67.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ghandadi M, Sahebkar A. Interleukin-6: a essential cytokine in most cancers multidrug resistance. Curr Pharm Des. 2016;22(5):518–26.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huynh PT, et al. CD90(+) stromal cells are the key supply of IL-6, which helps most cancers stem-like cells and irritation in colorectal most cancers. Int J Most cancers. 2016;138(8):1971–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wei C, et al. Crosstalk between most cancers cells and tumor related macrophages is required for mesenchymal circulating tumor cell-mediated colorectal most cancers metastasis. Mol Most cancers. 2019;18(1):64.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lv Q, et al. circRNA_101277 influences cisplatin resistance of colorectal most cancers cells by modulating the miR-370/IL-6 axis. Genet Res (Camb). 2022;2022:4237327.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, et al. Autocrine manufacturing of interleukin-6 confers cisplatin and paclitaxel resistance in ovarian most cancers cells. Most cancers Lett. 2010;295(1):110–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim S, et al. IL-4 derived from non-T cells induces basophil- and IL-3-independent Th2 immune responses. Immune Netw. 2013;13(6):249–56.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hong IS. Stimulatory versus suppressive results of GM-CSF on tumor development in a number of most cancers varieties. Exp Mol Med. 2016;48(7):e242.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Navarro R, et al. TGF-β-induced IGFBP-3 is a key paracrine issue from activated pericytes that promotes colorectal most cancers cell migration and invasion. Mol Oncol. 2020;14(10):2609–28.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Druzhkova I, et al. Expression of EMT-related genes in hybrid E/M colorectal most cancers cells determines fibroblast activation and collagen transforming. Int J Mol Sci. 2020;21(21):8119.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu Y, Xu Y. Built-in bioinformatics evaluation of expression and gene regulation community of COL12A1 in colorectal most cancers. Most cancers Med. 2020;9(13):4743–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu X, et al. Collagen facilitates the colorectal most cancers stemness and metastasis by an integrin/PI3K/AKT/Snail signaling pathway. Biomed Pharmacother. 2019;114:108708.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang R, et al. B7–H3 promotes colorectal most cancers angiogenesis by activating the NF-κB pathway to induce VEGFA expression. Cell Loss of life Dis. 2020;11(1):55.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Coulson-Thomas VJ, et al. Colorectal most cancers desmoplastic response up-regulates collagen synthesis and restricts most cancers cell invasion. Cell Tissue Res. 2011;346(2):223–36.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wei B, et al. Human colorectal most cancers development correlates with LOX-induced ECM stiffening. Int J Biol Sci. 2017;13(11):1450–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Afik R, et al. Tumor macrophages are pivotal constructors of tumor collagenous matrix. J Exp Med. 2016;213(11):2315–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kehlet SN, et al. Extreme collagen turnover merchandise are launched throughout colorectal most cancers development and elevated in serum from metastatic colorectal most cancers sufferers. Sci Rep. 2016;6:30599.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Seano G, Primo L. Podosomes and invadopodia: instruments to breach vascular basement membrane. Cell Cycle. 2015;14(9):1370–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aumailley M, et al. A simplified laminin nomenclature. Matrix Biol. 2005;24(5):326–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sekiguchi R, Yamada KM. Basement membranes in growth and illness. Curr High Dev Biol. 2018;130:143–91.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Maltseva D, et al. Knockdown of the α5 laminin chain impacts differentiation of colorectal most cancers cells and their sensitivity to chemotherapy. Biochimie. 2020;174:107–16.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhou B, et al. Interplay between laminin-5γ2 and integrin β1 promotes the tumor budding of colorectal most cancers through the activation of Sure-associated proteins. Oncogene. 2020;39(7):1527–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gordon-Weeks A, et al. Tumour-derived laminin α5 (LAMA5) promotes colorectal liver metastasis progress, branching angiogenesis and notch pathway inhibition. Cancers (Basel). 2019;11(5):630.

    CAS 
    Article 

    Google Scholar
     

  • Qin Y, et al. Laminin 521 enhances self-renewal through STAT3 activation and promotes tumor development in colorectal most cancers. Most cancers Lett. 2020;476:161–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Du W, et al. Novel hyaluronic acid oligosaccharide-loaded and CD44v6-targeting oxaliplatin nanoparticles for the therapy of colorectal most cancers. Drug Deliv. 2021;28(1):920–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mansoori B, et al. Hyaluronic acid-decorated liposomal nanoparticles for focused supply of 5-fluorouracil into HT-29 colorectal most cancers cells. J Cell Physiol. 2020;235(10):6817–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang G, et al. Colorectal cancer-associated ~ 6 kDa hyaluronan serves as a novel biomarker for most cancers development and metastasis. FEBS J. 2019;286(16):3148–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim M, Murakami A, Ohigashi H. Modifying results of dietary elements on (-)-epigallocatechin-3-gallate-induced pro-matrix metalloproteinase-7 manufacturing in HT-29 human colorectal most cancers cells. Biosci Biotechnol Biochem. 2007;71(10):2442–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen SJ, et al. EGFR-mediated G1/S transition contributes to the multidrug resistance in breast most cancers cells. Mol Biol Rep. 2012;39(5):5465–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mythreye Ok, Blobe GC. Proteoglycan signaling co-receptors: roles in cell adhesion, migration and invasion. Cell Sign. 2009;21(11):1548–58.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ibrahim SA, et al. Syndecan-1 (CD138) modulates triple-negative breast most cancers stem cell properties through regulation of LRP-6 and IL-6-mediated STAT3 signaling. PLoS ONE. 2013;8(12):e85737.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Li J, et al. Hypoxic colorectal cancer-derived extracellular vesicles ship microRNA-361-3p to facilitate cell proliferation by focusing on TRAF3 through the noncanonical NF-κB pathways. Clin Transl Med. 2021;11(3):e349.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watts ER, Walmsley SR. Irritation and hypoxia: HIF and PHD isoform selectivity. Developments Mol Med. 2019;25(1):33–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pezzuto A, Carico E. Position of HIF-1 in most cancers development: novel insights. A assessment. Curr Mol Med. 2018;18(6):343–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Narayanankutty A. PI3K/Akt/mTOR pathway as a therapeutic goal for colorectal most cancers: a assessment of preclinical and scientific proof. Curr Drug Targets. 2019;20(12):1217–26.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang HG, et al. KLF2 inhibits cell progress through regulating HIF-1α/Notch-1 sign pathway in human colorectal most cancers HCT116 cells. Oncol Rep. 2017;38(1):584–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu Z, et al. CCL19 suppresses angiogenesis by selling miR-206 and inhibiting Met/ERK/Elk-1/HIF-1α/VEGF-A pathway in colorectal most cancers. Cell Loss of life Dis. 2018;9(10):974.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang J, et al. LRG1 modulates epithelial-mesenchymal transition and angiogenesis in colorectal most cancers through HIF-1α activation. J Exp Clin Most cancers Res. 2016;35:29.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zong S, et al. Identification of hypoxia-regulated angiogenic genes in colorectal most cancers. Biochem Biophys Res Commun. 2017;493(1):461–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sui H, et al. Tanshinone IIA inhibits β-catenin/VEGF-mediated angiogenesis by focusing on TGF-β1 in normoxic and HIF-1α in hypoxic microenvironments in human colorectal most cancers. Most cancers Lett. 2017;403:86–97.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang W, et al. HIF-1α promotes epithelial-mesenchymal transition and metastasis by direct regulation of ZEB1 in colorectal most cancers. PLoS ONE. 2015;10(6):e0129603.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Liu C, et al. Tumor-associated macrophage-derived reworking progress factor-β promotes colorectal most cancers development by HIF1-TRIB3 signaling. Most cancers Sci. 2021;112(10):4198–207.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tang Y, et al. Hypoxia enhances exercise and malignant behaviors of colorectal most cancers cells by the STAT3/MicroRNA-19a/PTEN/PI3K/AKT axis. Anal Cell Pathol (Amst). 2021;2021:4132488.


    Google Scholar
     

  • Nagaraju GP, et al. Antiangiogenic results of ganetespib in colorectal most cancers mediated by inhibition of HIF-1α and STAT-3. Angiogenesis. 2013;16(4):903–17.

    PubMed 
    Article 

    Google Scholar
     

  • Heimes D, et al. In vivo modulation of angiogenesis and immune response on a collagen matrix through extracorporeal shockwaves. Int J Mol Sci. 2020;21(20):7574.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rosen LS, Jacobs IA, Burkes RL. Bevacizumab in colorectal most cancers: present function in therapy and the potential of biosimilars. Goal Oncol. 2017;12(5):599–610.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fukuoka S, et al. Regorafenib plus nivolumab in sufferers with superior gastric or colorectal most cancers: an open-label, dose-escalation, and dose-expansion part Ib trial (REGONIVO, EPOC1603). J Clin Oncol. 2020;38(18):2053–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li N, et al. Reducing acute toxicity and suppressing colorectal carcinoma utilizing Sorafenib-loaded nanoparticles. Pharm Dev Technol. 2020;25(5):556–65.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tien J, et al. Interstitial hypertension suppresses escape of human breast tumor cells through convection of interstitial fluid. Cell Mol Bioeng. 2021;14(2):147–59.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lunt SJ, et al. Interstitial fluid stress in tumors: therapeutic barrier and biomarker of angiogenesis. Future Oncol. 2008;4(6):793–802.

    PubMed 
    Article 

    Google Scholar
     

  • Wang G, et al. Position of SCFAs in intestine microbiome and glycolysis for colorectal most cancers remedy. J Cell Physiol. 2019;234(10):17023–49.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu PS, et al. VDR-SOX2 signaling promotes colorectal most cancers stemness and malignancy in an acidic microenvironment. Sign Transduct Goal Ther. 2020;5(1):183.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • De Jong WH, Borm PJ. Drug supply and nanoparticles:functions and hazards. Int J Nanomed. 2008;3(2):133–49.

    Article 

    Google Scholar
     

  • Swetledge S, et al. Distribution of polymeric nanoparticles within the eye: implications in ocular illness remedy. J Nanobiotechnol. 2021;19(1):10.

    CAS 
    Article 

    Google Scholar
     

  • Verma P, et al. Nanoparticle-mediated gene remedy methods for mitigating inflammatory bowel illness. Biomater Sci. 2021;9(5):1481–502.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thurner GC, Haybaeck J, Debbage P. Concentrating on drug supply within the aged: are nanoparticles an choice for treating osteoporosis? Int J Mol Sci. 2021;22(16):8932.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kulkarni PV, et al. Quinoline-n-butylcyanoacrylate-based nanoparticles for mind focusing on for the prognosis of Alzheimer’s illness. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(1):35–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Alkaff SA, et al. Nanocarriers for stroke remedy: advances and obstacles in translating animal research. Int J Nanomed. 2020;15:445–64.

    CAS 
    Article 

    Google Scholar
     

  • Taurin S, Nehoff H, Greish Ok. Anticancer nanomedicine and tumor vascular permeability; The place is the lacking hyperlink? J Management Launch. 2012;164(3):265–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen Y, et al. Hydrogen peroxide and hypochlorite responsive fluorescent nanoprobes for delicate most cancers cell imaging. Biosensors (Basel). 2022;12(2):111.

    CAS 
    Article 

    Google Scholar
     

  • Wang J, Li Y, Nie G. Multifunctional biomolecule nanostructures for most cancers remedy. Nat Rev Mater. 2021;6(9):766–83.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mundekkad D, Cho WC. Nanoparticles in scientific translation for most cancers remedy. Int J Mol Sci. 2022;23(3):1685.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Baek S, et al. Good multifunctional drug supply in the direction of anticancer remedy harmonized in mesoporous nanoparticles. Nanoscale. 2015;7(34):14191–216.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Govindarasu M, et al. Synthesis, physicochemical characterization, and in vitro analysis of biodegradable PLGA nanoparticles entrapped to folic acid for focused supply of kaempferitrin. Biotechnol Appl Biochem. 2022. https://doi.org/10.1002/bab.2290.

    Article 
    PubMed 

    Google Scholar
     

  • Solar T, et al. Engineered nanoparticles for drug supply in most cancers remedy. Angew Chem Int Ed Engl. 2014;53(46):12320–64.

    CAS 
    PubMed 

    Google Scholar
     

  • Ana Luiza CdSLO, et al. Impact of oxaliplatin-loaded poly (d, l-lactide-co-glycolic acid) (PLGA) nanoparticles mixed with retinoic acid and ldl cholesterol on apoptosis, drug resistance, and metastasis elements of colorectal most cancers. Pharmaceutics. 2020;12(2):193.

    Article 
    CAS 

    Google Scholar
     

  • Ghasemi Toudeshkchouei M, Zahedi P, Shavandi A. Microfluidic-assisted preparation of 5-fluorouracil-loaded PLGA nanoparticles as a possible system for colorectal most cancers remedy. Supplies (Basel). 2020;13(7):1483.

    Article 
    CAS 

    Google Scholar
     

  • Xiao B, et al. Co-delivery of camptothecin and curcumin by cationic polymeric nanoparticles for synergistic colon most cancers mixture chemotherapy. J Mater Chem B. 2015;3(39):7724–33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li L, et al. Pigment epithelium-derived issue gene loaded in cRGD-PEG-PEI suppresses colorectal most cancers progress by focusing on endothelial cells. Int J Pharm. 2012;438(1–2):1–10.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shi G, et al. Low-density lipoprotein-decorated and Adriamycin-loaded silica nanoparticles for tumor-targeted chemotherapy of colorectal most cancers. Adv Clin Exp Med. 2019;28(4):479–87.

    PubMed 
    Article 

    Google Scholar
     

  • Liang G, et al. Cationic microRNA-delivering nanocarriers for environment friendly therapy of colon carcinoma in xenograft mannequin. Gene Ther. 2016;23(12):829–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Javan B, Atyabi F, Shahbazi M. Hypoxia-inducible bidirectional shRNA expression vector supply utilizing PEI/chitosan-TBA copolymers for colorectal Most cancers gene remedy. Life Sci. 2018;202:140–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhu YJ, Chen F. pH-responsive drug-delivery methods. Chem Asian J. 2015;10(2):284–305.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sani NS, et al. A comparability of the anti-cancer results of free and PLGA-PAA encapsulated hydroxytyrosol on the HT-29 colorectal most cancers cell line. Anticancer Brokers Med Chem. 2022;22(2):390–4.

    PubMed 
    Article 

    Google Scholar
     

  • Lee KD, et al. Cisplatin-incorporated nanoparticles of poly(acrylic acid-co-methyl methacrylate) copolymer. Int J Nanomed. 2013;8:2835–45.


    Google Scholar
     

  • Zhang X, et al. Development of a tumor microenvironment pH-responsive cleavable PEGylated hyaluronic acid nano-drug supply system for colorectal most cancers therapy. Biomater Sci. 2020;8(7):1885–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Feng ST, et al. pH-sensitive nanomicelles for managed and environment friendly drug supply to human colorectal carcinoma LoVo cells. PLoS ONE. 2014;9(6):e100732.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jiang XJ, et al. pH- and thiol-responsive BODIPY-based photosensitizers for focused photodynamic remedy. Chemistry. 2016;22(24):8273–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brunato S, et al. PEG-polyaminoacid primarily based micelles for managed launch of doxorubicin: rational design, security and efficacy research. J Management Launch. 2021;335:21–37.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tasdogan A, Ubellacker JM, Morrison SJ. Redox regulation in most cancers cells throughout metastasis. Most cancers Discov. 2021;11(11):2682–92.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li D, et al. Redox-responsive self-assembled nanoparticles for most cancers remedy. Adv Healthc Mater. 2020;9(20):e2000605.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Xiong Y, et al. Engineering nanomedicine for glutathione depletion-augmented most cancers remedy. Chem Soc Rev. 2021;50(10):6013–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sauraj, et al. Redox-sensitive nanoparticles primarily based on xylan-lipoic acid conjugate for tumor focused drug supply of niclosamide in most cancers remedy. Carbohydr Res. 2021;499:108222.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang J, et al. Tumor redox heterogeneity-responsive prodrug nanocapsules for most cancers chemotherapy. Adv Mater. 2013;25(27):3670–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee HL, et al. Redox- and pH-responsive nanoparticles launch piperlongumine in a stimuli-sensitive method to inhibit pulmonary metastasis of colorectal carcinoma cells. J Pharm Sci. 2018;107(10):2702–12.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Durán-Lobato M, et al. Receptor-targeted nanoparticles modulate cannabinoid anticancer exercise by delayed cell internalization. Sci Rep. 2022;12(1):1297.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wei Y, et al. Transferrin-binding peptide functionalized polymersomes mediate focused doxorubicin supply to colorectal most cancers in vivo. J Management Launch. 2020;319:407–15.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rosch JG, et al. Formulation of folate-modified raltitrexed-loaded nanoparticles for colorectal most cancers theranostics. Pharmaceutics. 2020;12(2):133.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Oliveira A, et al. Maximizing the efficiency of oxaliplatin coated nanoparticles with folic acid for modulating tumor development in colorectal most cancers. Mater Sci Eng C Mater Biol Appl. 2021;120:111678.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Feng CL, et al. Self-assembling HA/PEI/dsRNA-p21 ternary complexes for CD44 mediated small lively RNA supply to colorectal most cancers. Drug Deliv. 2017;24(1):1537–48.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhong Y, et al. Co-administration of iRGD enhances tumor-targeted supply and anti-tumor results of paclitaxel-loaded PLGA nanoparticles for colorectal most cancers therapy. Int J Nanomed. 2019;14:8543–60.

    CAS 
    Article 

    Google Scholar
     

  • Zhang Z, et al. Anti-EGFR-iRGD recombinant protein modified biomimetic nanoparticles loaded with gambogic acid to boost focusing on and antitumor capacity in colorectal most cancers therapy. Int J Nanomed. 2018;13:4961–75.

    CAS 
    Article 

    Google Scholar
     

  • Wen X, et al. Software of taxol nanomicelles with Lyp-1 goal in focused 805–813 remedy of colon most cancers. J Nanosci Nanotechnol. 2021;21(2):805–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Noh I, et al. Concentrating on the tumor microenvironment with amphiphilic near-infrared cyanine nanoparticles for potentiated photothermal immunotherapy. Biomaterials. 2021;275:120926.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu G, et al. Doxorubicin-loaded tumor-targeting peptide-decorated polypeptide nanoparticles for treating main orthotopic colon most cancers. Entrance Pharmacol. 2021;12:744811.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • He F, et al. Aptamer-based focused drug supply methods: present potential and challenges. Curr Med Chem. 2020;27(13):2189–219.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bates PJ, et al. G-quadruplex oligonucleotide AS1411 as a cancer-targeting agent: makes use of and mechanisms. Biochim Biophys Acta Gen Subj. 2017;1861(5 Pt B):1414–28.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yu Z, et al. Focused therapy of colon most cancers with aptamer-guided albumin nanoparticles loaded with docetaxel. Int J Nanomed. 2020;15:6737–48.

    CAS 
    Article 

    Google Scholar
     

  • Mohtar MA, et al. Revisiting the roles of pro-metastatic EpCAM in most cancers. Biomolecules. 2020;10(2):255.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, et al. PEG-poly(amino acid)s/EpCAM aptamer multifunctional nanoparticles arrest the expansion and metastasis of colorectal most cancers. Biomater Sci. 2021;9(10):3705–17.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhao Y, et al. EpCAM aptamer-functionalized cationic liposome-based nanoparticles loaded with miR-139-5p for focused remedy in colorectal most cancers. Mol Pharm. 2019;16(11):4696–710.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Arslan FB, Ozturk Atar Ok, Calis S. Antibody-mediated drug supply. Int J Pharm. 2021;596:120268.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liszbinski RB, et al. Anti-EGFR-coated gold nanoparticles in vitro carry 5-fluorouracil to colorectal most cancers cells. Supplies (Basel). 2020;13(2):375.

    CAS 
    Article 

    Google Scholar
     

  • Lin CY, et al. Panitumumab-conjugated and platinum-cored pH-sensitive apoferritin nanocages for colorectal cancer-targeted remedy. ACS Appl Mater Interfaces. 2018;10(7):6096–106.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mohd-Zahid MH, et al. Gold nanoparticles conjugated with anti-CD133 monoclonal antibody and 5-fluorouracil chemotherapeutic agent as nanocarriers for most cancers cell focusing on. RSC Adv. 2021;11(26):16131–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pereira I, et al. Carcinoembryonic antigen-targeted nanoparticles potentiate the supply of anticancer medication to colorectal most cancers cells. Int J Pharm. 2018;549(1):397–403.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chang N, et al. A pH/ROS cascade-responsive and self-accelerating drug launch nanosystem for the focused therapy of multi-drug-resistant colon most cancers. Drug Deliv. 2020;27(1):1073–86.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Juang V, et al. pH-responsive PEG-shedding and focusing on peptide-modified nanoparticles for dual-delivery of irinotecan and microRNA to boost tumor-specific remedy. Small. 2019;15(49):e1903296.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Shi Y, et al. Software of the tumor website recognizable and dual-responsive nanoparticles for combinational therapy of the drug-resistant colorectal most cancers. Pharm Res. 2020;37(4):72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li Y, et al. Magnetic resonance imaging-guided and focused theranostics of colorectal most cancers. Most cancers Biol Med. 2020;17(2):307–27.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • El-Boubbou Ok. Magnetic iron oxide nanoparticles as drug carriers: preparation, conjugation and supply. Nanomedicine (Lond). 2018;13(8):929–52.

    CAS 
    Article 

    Google Scholar
     

  • Nosrati R, et al. Focused SPION siderophore conjugate loaded with doxorubicin as a theranostic agent for imaging and therapy of colon carcinoma. Sci Rep. 2021;11(1):13065.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kwiatkowski S, et al. Photodynamic remedy – mechanisms, photosensitizers and mixtures. Biomed Pharmacother. 2018;106:1098–107.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Solar S, et al. Ce6-modified carbon dots for multimodal-imaging-guided and single-NIR-laser-triggered photothermal/photodynamic synergistic most cancers remedy by diminished irradiation energy. ACS Appl Mater Interfaces. 2019;11(6):5791–803.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chu WY, et al. pH-responsive nanophotosensitizer for an enhanced photodynamic remedy of colorectal most cancers overexpressing EGFR. Mol Pharm. 2018;15(4):1432–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huo S, et al. Mechano-nanoswitches for ultrasound-controlled drug activation. Adv Sci (Weinh). 2022;9(12):e2104696.

    Article 
    CAS 

    Google Scholar
     

  • Yan L, et al. Small interfering RNA-loaded chitosan hydrochloride/carboxymethyl chitosan nanoparticles for ultrasound-triggered launch to hamper colorectal most cancers progress in vitro. Int J Biol Macromol. 2020;162:1303–10.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hasani-Sadrabadi MM, et al. Microfluidic manipulation of core/shell nanoparticles for oral supply of chemotherapeutics: a brand new therapy strategy for colorectal most cancers. Adv Mater. 2016;28(21):4134–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li X, et al. Novel β-1,3-D-glucan porous microcapsule enveloped folate-functionalized liposomes as a Computer virus for facilitated oral tumor-targeted co-delivery of chemotherapeutic medication and quantum dots. J Mater Chem B. 2020;8(11):2307–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bak A, Ashford M, Brayden DJ. Native supply of macromolecules to deal with ailments related to the colon. Adv Drug Deliv Rev. 2018;136–137:2–27.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Wang Y, et al. Microencapsulation of nanoparticles with enhanced drug loading for pH-sensitive oral drug supply for the therapy of colon most cancers. J Appl Polym Sci. 2013;129(2):714–20.

    CAS 
    Article 

    Google Scholar
     

  • Li Y, et al. Nanodiamond-based multifunctional platform for oral chemo-photothermal combinational remedy of orthotopic colon most cancers. Pharmacol Res. 2022;176:106080.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hou Y, et al. Focused therapeutic results of oral inulin-modified double-layered nanoparticles containing chemotherapeutics on orthotopic colon most cancers. Biomaterials. 2022;283:121440.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Landesman-Milo D, et al. Hyaluronan grafted lipid-based nanoparticles as RNAi carriers for most cancers cells. Most cancers Lett. 2013;334(2):221–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xin Y, et al. Nano-based supply of RNAi in most cancers remedy. Mol Most cancers. 2017;16(1):134.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kim R, et al. Preclinical analysis of antisense bcl-2 as a chemosensitizer for sufferers with gastric carcinoma. Most cancers. 2004;101(10):2177–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ray L. Synergistic anticancer exercise by co-delivered nanosized twin therapeutic brokers and siRNA in colon most cancers. J Drug Deliv Sci Technol. 2020;55:101351.

    CAS 
    Article 

    Google Scholar
     

  • Bäumer S, et al. Antibody-mediated supply of anti-KRAS-siRNA in vivo overcomes remedy resistance in colon most cancers. Clin Most cancers Res. 2015;21(6):1383–94.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Yang S, et al. Most cancers-activated doxorubicin prodrug nanoparticles induce preferential immune response with minimal doxorubicin-related toxicity. Biomaterials. 2021;272: 120791.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Klippstein R, et al. Passively focused curcumin-loaded PEGylated PLGA nanocapsules for colon most cancers remedy in vivo. Small. 2015;11(36):4704–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dai J, et al. Interlayer-crosslinked micelle with partially hydrated core exhibiting discount and pH twin sensitivity for pinpointed intracellular drug launch. Angew Chem Int Ed Engl. 2011;50(40):9404–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular